Synthesis of fluorophenyl derivatives of iron, molybdenum and tungsten *via* $B(C_6F_5)_3$ and unusual carbon-fluorine bond reactions †

Alexander N. Chernega, Andrew J. Graham, Malcolm L. H. Green,* Jane Haggitt, Julian Lloyd, Christian P. Mehnert, Nils Metzler and Joanne Souter

Inorganic Chemistry Laboratory, South Parks Road, Oxford, UK OX1 3QR

The reaction between $B(C_6F_5)_3$ and $[Fe(\eta-C_5H_5)(CO)_2Me]$ gave the unexpected product $[Fe\{C_6F_4C(O)Me-2\}-(\eta-C_3H_5)(CO)]$ **1** which reacts with the donor molecules $L = PMe_3$, PPh₃ or Bu'NC giving $[Fe\{C_6F_4C(O)Me-2\}-(\eta-C_3H_5)L]$.* Likewise $[\{Fe[C_6F_4C(O)Me-2](\eta-C_5H_5)\}_2(\mu-dppe)]^*$ was formed from **1** and Ph₂P(CH₂)₂PPh₂ (dppe). The formation of the compound where $L = PMe_3$ is shown to proceed *via* initial formation of $[Fe\{C_6F_4C(O)Me-2\}(\eta-C_5H_5)(CO)(PMe_3)]^*$. The reaction between $B(C_6F_5)_3$ and $[M(\eta-C_5H_5)(CO)_3Me]$ (M = Mo or W) gave the compounds $[M\{C_6F_4C(O)Me-2\}(\eta-C_5H_5)(CO)_2]$. The compounds $[M\{C_6F_3X-5-C(O)Me-2\}(\eta-C_5H_5)(CO)_2]^*$ (M = Mo or W) where X = H were prepared from the compounds where X = F *via* unusual C–F bond-activation reactions. The compound $[Fe\{C_6F_3H-5-C(O)Me-2\}(\eta-C_5H_5)(CO)]$ and PMe₃. The asterisk indicates the crystal structure has been determined.

The strong Lewis acid molecule tris(pentafluorophenyl)boron, $B(C_6F_5)_3$,¹ has recently attracted considerable interest as a cocatalyst in homogeneous Ziegler-Natta catalysis.² It is readily available and convenient to handle. Thus, unlike BF₃ which is a volatile gas and readily hydrolyses giving HF, the compound $B(C_6F_5)_3$ is a soluble white crystalline solid which is only slowly hydrolysed. We decided to explore its reactions with organotransition-metal compounds which might, in different ways, act as nucleophiles to the boron centre. This has led to unexpected reactions and we have recently reported that with $[Fe(\eta-C_5H_5)-$ (CO)₂Me] which leads to most unusual products, namely the compound [Fe{C₆F₄C(O)Me-2}(η -C₅H₅)(CO)] **1**.³ We have also shown that $B(C_6F_5)_3$ readily co-ordinates to the oxygen of terminal oxometal groups.⁴ Here we describe further reactions of compound 1 and related studies with molybdenum and tungsten compounds.

Results and Discussion

The Lewis acid molecule $\mathrm{B}(\mathrm{C_6F_5})_3$ was first prepared many years ago,¹ however the two reported syntheses have some disadvantages. The first method employed was to treat a pentane solution of pentafluorophenyl bromide with *n*-butyllithium at low temperatures to generate $Li(C_6F_5)$. The latter is thermally highly sensitive and detonates at *ca.* -20 °C. The resulting suspension of the lithium salt was treated with boron trichloride to form LiCl and $B(C_6F_5)_3$. The reported yield of the crude product was between 30 and 50%, but in our hands, when working on a several gram scale, the overall yield after purification was much lower at *ca.* 20%. The compound can also be prepared 1 using the thermally stable Grignard reagent $Mg(C_6F_5)Cl$ in Et₂O and BF₃·Et₂O. The yield of the compound Et₂O·B(C₆F₅)₃ was 88%. This preparation is unsatisfactory due to the difficulty of removal of co-ordinated diethyl ether to give the desired solvent-free molecule $B(C_6F_5)_3$.

It was decided to seek a modified procedure and improved preparation for solvent-free $B(C_6F_5)_3$. The reaction vessel shown in the Experimental section was designed to enable the addition of the thermally sensitive suspension of $Li(C_6F_5)$ to a solution of BBr_3 at -78 °C. Maintaining the entire reaction vessel at -78 °C is an *essential* feature of this synthesis.² This

Table 1 Selected bond lengths (Å) and angles (°) for the compounds 2, 3, 7 and 13

	2	3	7	13
M-C(6)	1.949(4)	1.957(12)	1.950(4)	1.900(14)
M-C(7)	2.003(4)	2.003(11)	2.005(4)	
M-C(8)	2.172(3)	2.171(10)	2.162(4)	2.107(13)
M-O(3)	2.141(2)	2.141(7)	2.145(2)	2.078(9)
C(14)–O(3)	1.258(4)	1.283(14)	1.236(4)	1.254(12)
C(10)-F(4)	1.347(4)	1.355(12)	1.353(4)	
C(11)-F(3)	1.353(4)	1.392(12)	1.344(5)	
C(12)-F(2)	1.340(4)	1.366(13)	_	
C(13)-F(1)	1.357(4)	1.335(12)	1.364(4)	
M-Cp _{centroid}	1.999	2.003	1.990	
W-P(1)				2.480(3)
W-C(1)				2.390(13)
O(3)-W-P(1)				77.4(2)
C(6)-M-O(3)	120.0(1)	120.9(4)	119.24(12)	118.34
C(8)-M-O(3)	73.2(1)	73.1(3)	72.00(11)	71.8(4)
M-O(3)-C(14)	121.4(2)	120.8(7)	122.1(2)	125.3(9)
O(3)-C(14)-C(9)	117.1(10)	116.3(3)	116.3(3)	114.1(11)
C(14)-C(9)-C(8)	113.5(3)	112.6(10)	112.6(3)	109.7(11)
C(9)-C(8)-M	115.5(2)	116.1(7)	116.0(3)	118.9(9)
C(6)-M-C(7)	77.0(1)	76.9(4)	76.9(2)	_
C(6)–M–C(8)	78.0(1)	78.3(4)	77.82(14)	77.4(5)

method, which is described in detail in the Experimental section, gave pure $B(C_6F_5)_3$ in $\approx 50\%$ yield on a 20 g scale.

The reactions between the compound $B(C_6F_5)_3$ and the methyl derivatives $[Fe(\eta-C_3H_3)(CO)_2Me]$, $[Mo(\eta-C_5H_5)(CO)_3Me]$ and $[W(\eta-C_5H_5)(CO)_3Me]$ have been studied. Treatment of a toluene solution of $[Fe(\eta-C_5H_5)(CO)_2Me]$ with 1 equivalent of $B(C_6F_5)_3$ gave air-sensitive black-green crystals of the compound $[Fe\{C_6F_4C(O)Me-2\}(\eta-C_5H_5)(CO)_3Me]$ with $B(C_6F_5)_3$ gives moderately air-sensitive red crystals of $[Mo\{C_6F_4C(O)Me-2\}(\eta-C_5H_5)(CO)_3Me]$ with $B(C_6F_5)_3$ gives moderately air-sensitive red crystals of $[Mo\{C_6F_4C(O)Me-2\}(\eta-C_5H_5)(CO)_2]$ **2**. The reaction between $[W(\eta-C_5H_5)(CO)_3Me]$ and $B(C_6F_5)_3$ gave purple crystals of $[W\{C_6F_4C(O)Me-2\}(\eta-C_5H_5)(CO)_2]$ **3**. The crystal structures of **2** and **3** have been determined and they are closely similar. The molecular structure of **3** is shown in Fig. 1 and selected distances and angles for **2** and **3** are given in Table 1. A discussion of these structures will be given later in the text.

The analytical and spectroscopic data for **1–3** and all the other new compounds described in this work are given in Table

[†] Non-SI units employed: Torr ≈ 133 Pa, eV $\approx 1.60 \times 10^{-19}$ J.

NMR data^b

- Compound^a
- 1 $[Fe{C_6F_4C(O)Me-2}(\eta-C_5H_5)(CO)]$ Black-green C, 49.8 (49.45); H, 2.45 (2.4) Mass (EI): 340, M^+ ; 312, $[M - CO]^+$ (base peak); 297, $[M - CO - CH_3]^+$; 247, $[M - CO - C_5H_5]^+$ IR (Nujol): 1968vs, 1630m, 1581m
- $[Mo{C_6F_4C(O)Me-2}(\eta-C_5H_5)(CO)_2]$ 2 Red C, 44.35 (44.1); H, 2.0 (2.0); Mo, 23.2 (23.5) Mass (EI): 413 (410), M⁺; 385 (382), [M - CO]⁺; 357 (354), [M - 2CO] IR (KBr): 1975vs, 1877vs, 1632s, 1573s, 1504s
- 3 $[W{C_6F_4C(O)Me-2}(\eta-C_5H_5)(CO)_2]$ Purple C, 36.2 (36.3); H, 1.6 (1.6); W, 38.9 (37.1) Mass (EI): 502 (496), M⁺ IR (KBr): 1966vs, 1864vs, 1636s, 1567s, 1505s
- 4 $[Fe{C_6F_4C(0)Me-2}(\eta-C_5H_5)(Bu^tNC)]$ Dark purple C, 54.7 (54.7); H, 4.45 (4.3); Fe, 14.2 (14.1); N, 3.5 (3.5) Mass (FAB⁺): 395, M^+ (base peak) IR (Nujol): 2044s, 1629m, 1560w, 1530m
- $[Fe{C_6F_4C(O)Me-2}(\eta-C_5H_5)(CO)(PMe_3)]$ 5 Black-purple C, 49.3 (49.1); H, 4.2 (4.1); Fe, 13.95 (13.4); P, 7.7 (7.4)
- IR (Nujol): 1968s, 1627s, 1547m, 1504s $[Fe\{C_6\check{F}_4C(0)Me\text{-}2\}(\eta\text{-}C_5H_5)(PMe_3)]$ 6 Purple Mass (FAB⁺): 388, M^+ (base peak); 323, $[M - C_5H_5]^+$; 312, [M - PMe₃]⁺; 247 IR (Nujol): 1626s, 1553m, 1502s
- 7 $[Mo\{C_6F_3H\text{-}5\text{-}C(O)Me\text{-}2\}(\eta\text{-}C_5H_5)(CO)_2]$ Dark red Mass (EI): M^+ , $[M - CO]^+$ IR (KBr): 1975vs, 1876vs, 1624vs, 1564vs, 1519s
- $[W{C_6F_3H-5-C(O)Me-2}(\eta-C_5H_5)(CO)_2]$ 8 Green IR (KBr): 1965vs, 1864vs, 1726s, 1559s
- $[W{C_6F_3H-5-C(O)Me-2}(\eta-C_5H_5)(CO)(PMe_3)]$ 9 Blue violet C, 38.5 (38.8); H, 3.0 (3.45); P, 5.7 (5.9) Mass (FAB): 526, M IR (KBr): 1802vs, 1632s, 1586m, 1540m
- 10 $[Fe{C_6F_3H-5-C(O)Me-2}(\eta-C_5H_5)(PMe_3)]$ Black purple C, 51.4 (51.9); H, 4.8 (4.9); Fe, 15.1 (15.1); P, 8.3 (8.4) Mass (FAB⁺): 370, M^+ (base peak) IR (KBr): 1619s, 1547s, 1505s

- ¹H:^{*c*} 2.13 (d, 3 H, $J_{FH} = 4.2$, COCH₃), 4.80 (s, 5 H, C₅H₅) ¹³C-{¹H}: ^c27.7 (d, $J_{FC} = 8.5$, COCH₃), 93.5 (s, C₅H₅), 123.7 (m, C_b), 136.2 (dm, ¹ $J_{FC} = 242$, C_b), 137.6 (dm, ¹ $J_{FC} = 252$, C_d), 139.2 (dm, ¹ $J_{FC} = 248$, C_b), 150.5 (dm, ${}^{1}J_{FC} = 243$, C_c), 183.2 (dm, $J_{FC} = 45$, C_a), 203.4 (m, *C*OCH₃), 246.8 ¹⁹F: c -164.9 (m, 1 F, F_e), -156.8 (m, 1 F, F_e), -138.4 (m, 1 F, F_f), -115.7 (m, 1 F, F_c) ¹H:^{*c*} 2.80 (d, 3 H, J_{FH} = 3.8, COCH₃), 5.07 (s, 5 H, C₅H₅) 11. 2.60 (d, 3 11, $J_{FT} = 3.6$, COCH₃), 5.07 (s, 5 11, $C_5 I_{15}$) 1³C-{¹H}: 26.7 (d, $J_{FC} = 8.4$, COCH₃), 92.1 (s, $C_5 H_5$), 124.3 (m, C_b), 136.0 (dm, $^1J_{FC} = 266$, C_e), 140.2 (dm, $^1J_{FC} = 266$, C_d), 150.0 (dm, $^1J_{FC} = 263$, C_f), 152.2 (dm, $^1J_{FC} = 233$, C_c), 178.1 (dm, $J_{FC} = 40$, C_a), 202.7 (pseudo-t, $J_{FC} = 6.1$, COCH₃), 236.6 (d, J = 4.7, CO), 245.6 (s, CO)
- ^{19}F : c -165.3 (m, 1 F, F_c), -157.1 (m, 1 F, F_d), -140.0 (m, 1 F, F_f), -116.0 (m,
- 1 F, F_c)
- ¹H:^d 1.02 (m, 9 H, PCH₃), 2.54 (m, 3 H, COCH₃), 4.28 (s, 5 H, C₅H₅) ¹³C-{¹H}: ^{*d*} 17.2 (d, $J_{PC} = 24.4$, PCH₃), 27.6 (s, CO*C*H₃), 76.1 (s, C_5H_5), 130.9 (m, C_b), 133.0 (m, C_e), 140.7 (m, C_d), 149.6 (m, C_f), 156.1 (m, C_e), 195.6 (m, C_a), 206.7 (s, COCH₃) ¹⁹F:^{*d*} -170.6 (m, 1 F, F_a), -159.1 (m, 1 F, F_d), -140.2 (m, 1 F, F_f), -120.5
- (m, 1 F, F_c) ³¹P-{¹H}:^{*d*} 31.9 (s, 1 P)
- ¹H:^{*c*} 2.81 (d, 3 H, $J_{FH} = 4.2$, COCH₃), 5.44 (s, 5 H, C₅H₅), 6.89 (m, 1 H, H_d) ¹¹C-{¹H}: ²28.9 (d, $J_{FC} = 9.2$, COCH₃), 94.7 (s, C₅H₅), 104.5 (dd, $J_{FC} = 21$ and 37, C_d), 129.7 (dm, $J_{FC} = 18$, C_b), 146.0 (dm, $^{1}J_{FC} = 256$, C_d), 150.9 (dm, $^{1}J_{FC} = 255$, C_f), 164.2 (dm, $^{1}J_{FC} = 260$, C_d), 183.1 (dm, $J_{FC} = 49$, C_a), 205.0 (s, COCH₃), 247.9 (s, CO), 253.6 (s, CO) 19 F:^c -146.9 (m, 1 F, F_e or F_f), -144.9 (m, 1 F, F_f or F_e), -92.3 (m, 1 F, F_c) ¹H:^{*c*} 2.92 (d, 3 H, $J_{FH} = 4.0$, COCH₃), 5.58 (s, 5 H, C₅H₅), 6.85 (m, 1 H, H_d)
- ¹¹*d*)¹³C-{¹H}: ^c 27.8 (d, CO*C*H₃), 92.9 (s, C₅H₅), 104.3 (m, C_d), 130.3 (m, C_b), 145.5 (dm, ¹*J*_{FC} = 243, C_e), 150.3 (dm, ¹*J*_{FC} = 271, C_d), 164.1 (dm, ¹*J*_{FC} = 237, C_e), 178.4 (dm, *J*_{FC} = 64, C_a), 204.3 (m, COCH₃), 238.3 (s, CO), 246.5
- (s, CO) ¹⁹F:^c -147.5 (m, 1 F, F_e), -146.5 (m, 1 F, F_f), -92.0 (m, 1 F, F_d) ¹H: 1.54 [d, $J_{PH} = 9.0, 9$ H, P(CH₃)], 2.99 (d, 3 H, $J_{FH} = 3.0, \text{COCH}_3$), 5.17 (s, 5 H, C_3H_3), 6.44 (m, 1 H, H₄)
- ⁵ H₁, C₃r₃, 0.44 (iii, 11, 11, 11_d) ¹³C-{¹H}: ^c 19.2 [d, $J_{PC} = 29.0$, P(CH₃)], 26.7 (d, $J_{FC} = 7.7$, CO*C*H₃), 91.3 (s, C₅H₅), 100.0 (m, C_d), 128.9 (m, C_b), 144.2 (dm, ¹ $J_{FC} = 236$, C_e), 150.2 (dm, ¹ $J_{FC} = 249$, C_f), 165.4 (dm, ¹ $J_{FC} = 250$, C_c), 190.4 (m, *C*OCH₃), 193.2 (dm, C_a),
- 240.6 (d, $J_{PC} = 10.7$, CO) ¹⁹F:^c -151.1 (m, 1 F, F_e or F_e), -149.7 (m, 1 F, F_f or F_e), -91.3 (m, 1 F, F_e) ³¹P-{¹H}:^c 11.3 (s)
- ¹H:^d 1.00 [m, 9 H, P(CH₃)], 2.56 (m, 3 H, COCH₃), 4.28 (s, 5 H, C₅H₅), 6.78 (m, 1 H, H_d)
- ¹³C-{¹H}:^{*d*} 17.1 [d, $J_{PC} = 25.6$, P(CH₃)], 27.6 (s, COCH₃), 76.1 (s, C₅H₅), 103.5 (m, C_d), 137.1 (m, C_b), 143.1 (m, C_c), 149.6 (m, C_f), 169.8 (m, C_c), 196.4 (m, C_a), 207.4 (s, COCH₃)
- ¹⁹F:^{*d*} -153.0 (m, 1 F, F_e), -146.6 (m, 1 F, F_f), -96.4 (m, 1 F, F_c) $^{31}P-\{^{1}H\}:^{d}32.3$ (s)

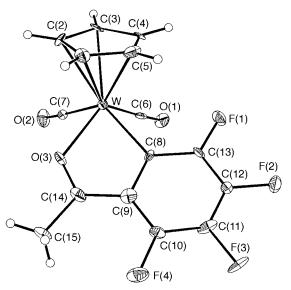
Compound^a

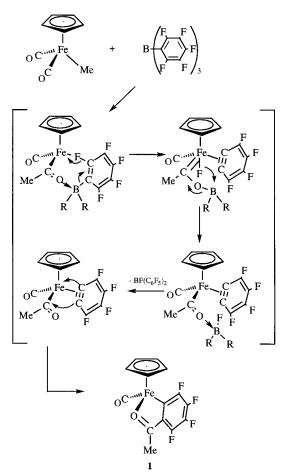
- 11 [Fe{C₆F₄C(O)Me-2}(η -C₅H₅)(PPh₃)] Black-purple C, 65.2 (64.8); H, 3.7 (4.0); Fe, 9.2 (9.7); P, 5.2 (5.3) Mass (FAB⁺): 574, *M*⁺ (base peak); 509, [*M* - C₅H₅]⁺; 383 IR (Nujol): 1734m, 1628m, 1562w
- [{Fe[C₆F₄C(O)Me-2](η-C₅H₅)}₂(μ-dppe)] Purple
 C, 61.5 (61.1); H, 4.2 (3.9); Fe, 10.6 (10.9) Mass (FAB⁺): 1022, M⁺

NMR data^b

 ${}^{1}\text{H:}{}^{c} 1.75 \text{ (m, 3 H, COCH}_{3}\text{)} 4.32 \text{ (s, 5 H, C}_{5}\text{H}_{5}\text{)} 6.94 \text{ [m, 9 H, P(C}_{6}\text{H}_{3}\text{)}\text{]} 7.35 \text{ [m, 6 H, P(C}_{6}\text{H}_{3}\text{)}\text{]} } {}^{13}\text{C-}{}^{1}\text{H}{}^{1}\text{S:}{}^{c} 27.1 \text{ (s, COCH}_{3}\text{)} 77.2 \text{ (s, C}_{5}\text{H}_{5}\text{)} 127.8 , 129.4 \text{ [m, P(C}_{6}\text{H}_{5}\text{)}\text{]} , 134.2 \text{ (m, 7}_{6}\text{)} , 141.1 \text{ (m, C}_{d}\text{)} , 149.8 \text{ (m, C}_{d}\text{)} , 156.3 \text{ (m, C}_{d}\text{)} , 193.7 \text{ (m, C}_{a}\text{)} , 207.2 \text{ (s, COCH}_{3}\text{)} , C_{b} \text{ not observed } \\ {}^{19}\text{F:}{}^{c} - 167.1 \text{ (m, 1 F, F}_{e}\text{)} , -154.3 \text{ (m, 1 F, F}_{d}\text{)} , -136.4 \text{ (m, 1 F, F}_{f}\text{)} , -115.4 \text{ (m, 1 F, F}_{d}\text{)} \\ {}^{3}\text{P-}{}^{1}\text{H}{}^{1}\text{S:}{}^{c} 76.0 \text{ (s)} \\ {}^{11}\text{H:}{}^{d} 1.28 \text{ [m, 4 H, P(CH_{2})_{2}\text{P}\text{]} , 2.06 \text{ (s, 3 H, COCH}_{3}\text{)} , 4.09 \text{ (s, 5 H, C}_{5}\text{H}_{5}\text{)} , 6.93 , 7.21 , 7.39 \text{ [m, 20 H, P(C}_{6}\text{H}_{5}\text{)}\text{]} \\ {}^{13}\text{C-}{}^{1}\text{H}{}^{1}\text{S:}{}^{c} 21.6 \text{ [s, P(CH_{2})_{2}\text{P}\text{]} , 27.6 \text{ (s, COCH}_{3}\text{)} , 76.5 \text{ (s, C}_{5}\text{H}_{5}\text{)} , 128.4 , 129.7 \text{ [m, P(C}_{6}\text{H}_{5}\text{)}\text{]} , 131.3 \text{ (m, C}_{b}\text{)} , 132.6 \text{ [br m, P(C}_{6}\text{H}_{5}\text{)}\text{]} , 134.0 \text{ (m, C}_{c}\text{)} , 140.8 \text{ (m, C}_{d}\text{)} , 149.5 \text{ (m, C}_{f}\text{)} , 155.5 \text{ (m, C}_{c}\text{)} , 194.0 \text{ (m, C}_{a}\text{)} , 207.3 \text{ (s, COCH}_{3}\text{)} , C_{b} \text{ not observed} \\ {}^{19}\text{F:}{}^{d} - 170.1 \text{ (m, 1 F, F}_{e}\text{)} , -158.2 \text{ (m, 1 F, F}_{d}\text{)} , -139.4 \text{ (m, 1 F, F}_{f}\text{)} , -120.1 \text{ (m, 1 F, F}_{c}\text{)} \\ {}^{31}\text{P}_{-}{}^{1}\text{H}{}^{1}\text{S:}{}^{d} 69.2 \text{ (s)} \end{array}$

^{*a*} Analytical data given as found (calculated) in %. Mass spectral data given as: m/z (assignment), IR data (cm⁻¹) as KBr discs or Nujol mulls, as indicated. ^{*b*} At probe temperature. Data given as: chemical shift (δ) (multiplicity, relative intensity, J in Hz, assignment). The data for compounds **1**, **4** and **5** are given in ref. 3. ^{*c*} In C₆D₆. ^{*d*} In CD₂Cl₂. ^{*e*} Analysis not made; characterised by spectroscopic data only.



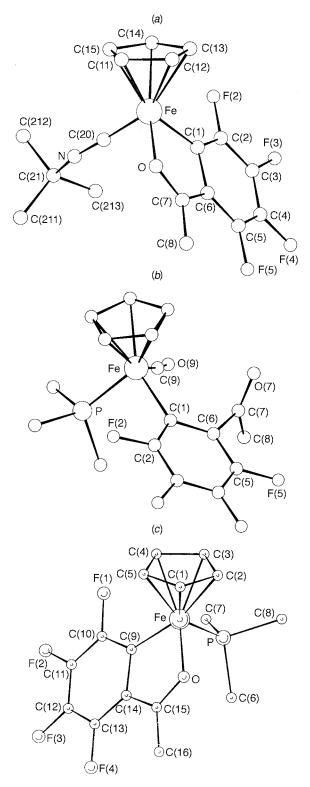

Fig. 1 Molecular structure of $[W\{C_6F_4C(O)Me\text{-}2\}(\eta\text{-}C_5H_5)(CO)_2]$ 3; that of 2 is almost superimposable

2. For many of the compounds the complete assignment of the ¹³C and ¹⁹F NMR spectra was assisted by two-dimensional NMR experiments, including F–F COSY (correlation spectroscopy), C–F heteronuclear single-quantum correlation (HSQC) and heteronuclear multiple-bond coherence (HMBC) experiments. The close similarities between the NMR and IR spectra of **1** and those of **2** and **3** strongly suggest **1** has the same five-membered MC₂CO ring that is found in **2** and **3**. This is further supported by the crystal structures of several derivatives of **1**, as described below.

The formation of compounds **1–3** appears to involve a formal insertion of a tetrafluorobenzyne C_6F_4 fragment, arising from $B(C_6F_5)_3$, into the M–C bond of a acetylmetal group. To help to elucidate the reaction mechanism, boron-containing products of the reaction were isolated and characterised. Thus, the preparation of **1** was repeated under the same conditions, but the highly volatile products of the reaction mixture were collected in a cold trap and then treated with 4-methylpyridine. After removal of solvent a white powder was recovered. The ¹H and ¹¹B-{¹H} NMR spectra of this residue showed the formation of the 4-methylpyridine adducts $C_6H_7N\cdot BF_2(C_6F_5)$ and $C_6H_7N\cdot BF_3$. The observed chemical shifts were identical with the values quoted in the literature (see the Experimental section).⁵ Owing to the lower volatility of $BF(C_6F_5)_2$ it was not

possible selectively to evaporate it from the initial reaction mixture. However, this mixture was monitored by ¹¹B-{¹H} NMR spectroscopy which showed the formation of bands assignable to $BF(C_6F_5)_2$. The reaction between the compound [Mo- $(\eta$ -C₅H₅)(CO)₃Me] and B(C₆F₅)₃ was monitored by ¹¹B NMR spectroscopy and the data also showed the formation of $BF(C_6F_5)_2$, $BF_2(C_6F_5)$ and BF_3 . In light of the observation of these boron-containing products, the reaction of the compound $[Fe(\eta-C_5H_5)(CO)_2Me]$ was repeated using only 1/3 equivalent of $B(C_6F_5)_3$. The yield of 1 under these conditions was essentially the same as before but it was necessary to double the reaction time. We infer that during the formation of 1-3 the $B(C_6F_5)_3$ successively loses C_6F_4 fragments to the metal centre with formation of the compounds $BF(C_6F_5)_2$, $BF_2(C_6F_5)$ and, finally, BF₃. On the basis of these preliminary observations, we tentatively propose a mechanism for the formation of 1, as shown in Scheme 1. The first step is the co-ordination of the Lewis acid $B(C_6F_5)_3$ to the oxygen atom of a CO ligand thereby promoting migration of the methyl group. In related systems other Lewis acids such as (AlBr₃)₂ have been shown to promote the migration of a methyl group to give an acyl ligand.⁶ It is envisaged that the resulting vacant co-ordination site on the Fe is then occupied by a fluorine atom of a weakly co-ordinating η^2 -C₆F₅ group of B(C₆F₅)₃. Similar co-ordination of B(C₆F₅)₃ to metal centres has been reported.⁷⁻¹⁰ The next proposed step involves fragmentation of the $B(C_6F_5)_3$ ligand by cleavage of a C-F bond and a B-C bond leading to the elimination of $BF(C_{6}F_{5})_{2}$, as shown in Scheme 1. Finally, the co-ordinated benzyne C₆F₄ fragment inserts into the metal-acyl group giving the neutral compound **1**.

The five-membered rings formed by the atoms MC₃O in compounds 1-3 are unusual and the reactions of these compounds with potential donor ligands were studied with a view to displacing the acyl oxygen from the metal. Treatment of the compound [Fe{C₆F₄C(O)Me-2}(η -C₅H₅)(CO)] 1 with tertbutyl isocyanide gave air-sensitive dark purple crystals of $[Fe{C_6F_4C(O)Me-2}(\eta-C_5H_5)(Bu^tNC)]$ **4** in 45% yield. This compound is thermally stable, sublimes at 75 °C under vacuum (10^{-1} Torr) and melts without decomposition in a sealed capillary at 85 °C. It is moderately soluble in pentane and very soluble in Et₂O, benzene, CH₂Cl₂ and tetrahydrofuran (thf). Its crystal structure has been determined and the molecular structure is shown in Fig. 2(a). Selected distances and angles are given in Table 3. The structure shows that the *tert*-butyl isocyanide group has replaced the terminal carbonyl in 1 and a fivemembered FeC₃O ring is still present. Attempts to cleave the Fe–O bond in 1 by treatment with an excess of *tert*-butyl isocyanide gave only 4. In contrast to the formation of 4, treat-



Scheme 1 A possible mechanism for the formation of compound 1

ment of **1** with 1 equivalent of trimethylphosphine gives airsensitive purple crystals of the compound $[Fe{C_6F_4C(O)-Me-2}(\eta-C_5H_5)(CO)(PMe_3)]$ **5** which it appears is formed by a simple addition of a trimethylphosphine ligand and displacement of the co-ordinating acyl oxygen. Compound **5** melts without decomposition at 95 °C and is soluble in all common organic solvents. Its crystal structure has been determined and the molecular structure is shown in Fig. 2(*b*). Selected distances and angles are given in Table 3. The structure shows that both the PMe₃ and CO ligands are bound to the iron centre and the oxygen atom of the acyl group is no longer co-ordinated to the metal.

On heating a heptane solution of the compound $[Fe\{C_6-F_4C(0)Me-2\}(\eta-C_5H_5)(CO)(PMe_3)]$ **5** carbon monoxide was evolved and $[Fe\{C_6F_4C(0)Me-2\}(\eta-C_5H_5)(PMe_3)]$ **6** was formed in 74% yield. The black-purple crystals are sensitive to air and melt without decomposition at 92 °C in a sealed capillary. The crystal structure of **6** has been determined and the molecular structure is shown in Fig. 2(*c*). Selected distances and angles are given in Table 3. The structure is closely similar to those of compounds **2–4** and includes the by now familiar fivemembered MC₃O ring system. Thus it appears that compound **5** is an intermediate in the formation of **6**. Indeed, refluxing a heptane solution of **1** with an excess of PMe₃ leads directly to the formation of **6**, as shown by monitoring the infrared spectra of the reaction mixture.

Compound **2** was treated with trimethylphosphine in the expectation that the co-ordinated acyl oxygen or a CO ligand would be displaced. However instead an unexpected and specific activation of a C–F bond occurs giving purple crystals of $[Mo\{C_6F_3H-5-C(O)Me-2\}(\eta-C_5H_5)(CO)_2]$ **7**. Its crystal structure has been determined; the molecular structure is shown in Fig. 3 and selected distances and angles are given in Table 1. The molecular structure is closely similar to that of **2** except

Fig. 2 Molecular structures of (*a*) [Fe{C₆F₄C(O)Me-2}(η -C₅H₅)-(Bu'NC)] **4**, (*b*) [Fe{C₆F₄C(O)Me-2}(η -C₅H₅)(CO)(PMe₃)] **5** and (*c*) [Fe{C₆F₄C(O)Me-2}(η -C₅H₅)(PMe₃)] **6**

that the F atom attached to the C(12) carbon has been replaced by a hydrogen atom. The anisotropic thermal parameters of all fluorine atoms are unexceptional. The spectroscopic properties of 7 are closely similar to those of 2. For example, the IR spectra of 2 and 7 were almost identical and the carbonyl region for both is consistent with the presence of an Mo(CO)₂ fragment. Further, the ¹⁹F NMR spectrum of 7 confirms the presence of only three fluorine atoms and in the ¹H NMR spectrum there is a multiplet at δ 6.89 which may be assigned to a hydrogen attached to the C(12) carbon of the aryl ring. The conversion of 2 into 7 requires the presence of the PMe₃ since refluxing 2 in

 Table 3
 Selected interatomic distances (Å) and angles (°) for compounds 4–6, 11 and 12

Compound				
4	$\begin{array}{l} Fe-O \\ Fe-C(1) \\ Fe-C(20) \\ Fe-Cp_{cen} \\ O-C(7) \\ C(1)-C(2) \\ C(1)-C(6) \\ C(21)-N \end{array}$	$\begin{array}{c} 1.964(2)\\ 1.938(2)\\ 1.811(2)\\ 1.712\\ 1.247(3)\\ 1.378(4)\\ 1.424(3)\\ 1.453(3) \end{array}$	$\begin{array}{l} \text{O-Fe-C(1)} \\ \text{O-Fe-C(20)} \\ \text{C(1)-Fe-C(20)} \\ \text{Fe-O-C(7)} \\ \text{Fe-C(1)-C(6)} \\ \text{O-C(7)-C(6)} \\ \text{Fe-C(20)-N} \\ \text{C(1)-C(6)-C(7)} \end{array}$	$\begin{array}{c} 81.05(8)\\ 95.22(8)\\ 87.30(9)\\ 117.6(2)\\ 112.9(2)\\ 115.6(2)\\ 117.4(2)\\ 112.4(2) \end{array}$
5	$\begin{array}{l} Fe-P \\ Fe-C(1) \\ Fe-C(9) \\ Fe-Cp_{cen} \\ O(7)-C(7) \\ C(1)-C(2) \\ C(1)-C(6) \\ C(9)-O(9) \end{array}$	$\begin{array}{c} 2.195(1)\\ 2.017(4)\\ 1.744(4)\\ 1.722\\ 1.207(5)\\ 1.377(6)\\ 1.414(6)\\ 1.158(5) \end{array}$	$\begin{array}{l} P-Fe-C(1)\\ P-Fe-C(9)\\ C(1)-Fe-C(9)\\ C(1)-C(6)-C(7)\\ Fe-C(1)-C(6)\\ O(7)-C(7)-C(6)\\ Fe-C(9)-O(9)\\ C(6)-C(7)-O(7) \end{array}$	$\begin{array}{c} 93.0(1)\\ 86.4(1)\\ 99.4(2)\\ 122.5(3)\\ 124.9(3)\\ 121.5(4)\\ 172.2(4)\\ 121.5(4)\end{array}$
6	$\begin{array}{c} Fe-P \\ Fe-C(9) \\ Fe-O \\ Fe-Cp_{cen} \\ O-C(15) \\ C(9)-C(14) \\ C(14)-C(15) \\ P-C(6) \end{array}$	$\begin{array}{c} 2.188(1)\\ 1.929(3)\\ 1.946(3)\\ 1.701\\ 1.262(5)\\ 1.436(5)\\ 1.433(6)\\ 1.816(5) \end{array}$	$\begin{array}{l} P-Fe-C(9)\\ C(9)-Fe-O\\ P-Fe-O\\ C(9)-C(14)-C(15)\\ Fe-C(9)-C(14)\\ O-C(15)-C(14)\\ Fe-O-C(15)\\ C(10)-C(9)-C(14) \end{array}$	$\begin{array}{c} 88.2(1)\\ 81.7(1)\\ 95.30(9)\\ 112.3(3)\\ 112.0(3)\\ 115.8(3)\\ 117.4(2)\\ 114.1(3) \end{array}$
11	$\begin{array}{l} Fe-P \\ Fe-C(1) \\ Fe-O \\ Fe-Cp_{cen} \\ O-C(7) \\ C(1)-C(6) \\ C(6)-C(7) \\ P-C(111) \end{array}$	$\begin{array}{c} 2.220(1)\\ 1.939(5)\\ 1.980(3)\\ 1.717\\ 1.256(5)\\ 1.442(6)\\ 1.440(7)\\ 1.844(4) \end{array}$	$\begin{array}{l} P-Fe-C(1)\\ C(1)-Fe-O\\ P-Fe-O\\ C(1)-C(6)-C(7)\\ Fe-C(1)-C(6)\\ O-C(7)-C(6)\\ Fe-O-C(7)\\ C(2)-C(1)-C(6) \end{array}$	$\begin{array}{c} 93.7(1)\\ 81.6(2)\\ 88.8(1)\\ 112.9(4)\\ 112.5(3)\\ 115.9(4)\\ 116.9(3)\\ 115.0(4) \end{array}$
12 Cn. denote	Fe(1)-P(1) Fe(1)-C(6) Fe(1)-O(1) Fe(1)-Cp _{cen} O(1)-C(12) C(6)-C(11) C(11)-C(12) P(1)-C(14) s the centroid of	2.186(2) 1.921(6) 1.956(4) 1.692 1.264(7) 1.429(9) 1.42(1) 1.822(6) of the C-H-	$\begin{array}{l} P(1)-Fe(1)-C(6)\\ C(6)-Fe(1)-O(1)\\ P(1)-Fe(1)-O(1)\\ C(6)-C(11)-C(12)\\ Fe-C(6)-C(11)\\ O(1)-C(12)-C(11)\\ Fe-O(1)-C(12)\\ C(7)-C(6)-O(11)\\ \end{array}$	$\begin{array}{c} 93.1(2)\\ 81.3(2)\\ 92.9(1)\\ 112.3(6)\\ 113.4(6)\\ 116.0(6)\\ 117.0(5)\\ 115.3(7) \end{array}$

Cp_{cen} denotes the centroid of the C₅H₅ ring.

toluene for 48 h in the absence of PMe₃ showed no evidence for the formation of 7. Under similar conditions, no reaction occurred between 2 and triphenylphosphine. This suggests the trimethylphosphine is directly responsible for the removal of the fluorine during the formation of 7. The reactions of 2 and 3 are given in Scheme 2. The reaction between $[W{C_6F_4C(O)}-$ Me-2} $(\eta$ -C₅H₅ $)(CO)_2$] 3 and PMe₃ gave the green tungsten compound $[W{C_6F_3H-5-C(O)Me-2}(\eta-C_5H_5)(CO)_2]$ 8 and the similarity of the spectroscopic data showed that 8 and 7 were very closely similar and therefore we propose they are isostructural. Photolysis of 3 in the presence of an excess of trimethylphosphine causes displacement of a carbonyl ligand giving the blue-violet compound [W{C₆F₃H-5-C(O)Me-2}(η-C₅H₅)(CO)-(PMe₃)] 9, together with some 8; these may be separated by column chromatography on alumina. It seems likely that the formation of 9 from 3 proceeds via 8 as an intermediate.

Following the discovery of C–F bond-activation reactions which lead to the formation of compounds **7** and **8**, the photolysis of a refluxing toluene solution of **1** and trimethylphosphine was investigated. Chromatography of the reaction mixture allowed the separation of the purple-black crystalline compound [Fe{C₆F₃H-5-C(O)Me-2}(η -C₅H₅)(PMe₃)] **10** in 26% yield. The air-sensitive crystals of **10** are soluble in common organic solvents and melt without decomposition at 90 °C.

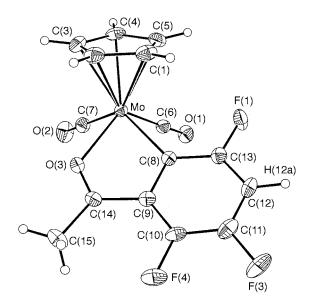
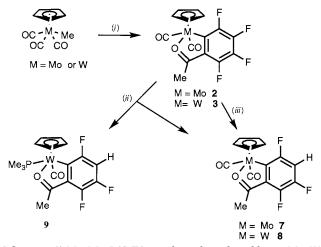
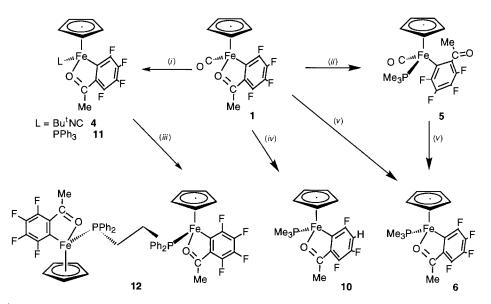
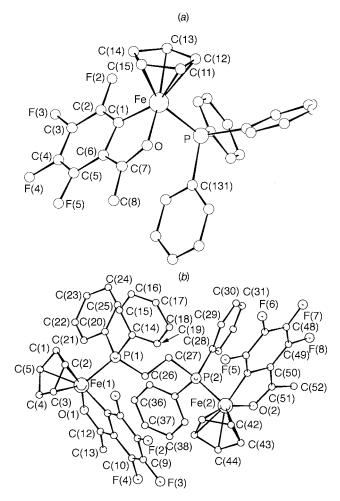



Fig. 3 Molecular structure [Mo{ $C_6F_3H-5-C(O)Me-2$ }($\eta-C_5H_5$)(CO)₂]7



Scheme 2 (*i*) M = Mo, B(C_6F_5)₃ in toluene for 42 h, yield 25%; M = W, same except 48 h, 75%; (*ii*) excess of PMe₃ in toluene, photolysis for 7.5 h then room temperature (r.t.) for 16.5 h, chromatography on alumina, *ca.* 25% **8** and 25% **9**; (*iii*) excess of PMe₃ in toluene, reflux for 3 h, stir at r.t. for 15 h, 25%


The spectroscopic data show that, as for **7** and **8**, there is a hydrogen attached to the C_d carbon atom of the aromatic C_6 ring. The reactions of **1** described above are shown in Scheme 3.

Analogous photolysis reactions on mixtures of compound 1 with PPh₃ or dppe (Ph₂PCH₂CH₂PPh₂) did not result in the substitution of fluorine F_d by hydrogen. Instead, displacement of the terminal carbonyl occurred. A toluene solution of a mixture of 1 and triphenylphosphine was refluxed for 18 h, until the v(CO) absorption of the carbonyl ligand of **1** had disappeared, to give black-purple crystals of $[Fe\{C_6F_4C(O)Me-2\}(\eta-C_5H_5)-$ (PPh₃)] 11, in 42% yield. Similarly, when a mixture of 1 and dppe in toluene at 60 °C was photolysed for 15 h dark purple crystals of $[{Fe[C_6F_4C(O)Me-2](\eta-C_5H_5)}_2(\mu-dppe)]$ 12 were prepared in 34% yield. The crystals of 11 and 12 are moderately stable in air and only show signs of decomposition after several hours. They dissolve sparingly in pentane and heptane and are very soluble in benzene, CH₂Cl₂ and thf. Compound 11 sublimes at 105 °C under vacuum (10⁻¹ Torr) and melts without decomposition at 172 °C. The crystal structures of 11 and 12 have been determined and the molecular structures are shown in Fig. 4(a) and 4(b), respectively. Selected distances and angles are given in Table 3. In the light of the crystal structure data an explanation for the preference for fluorine substitution at the C(12) (or C_d) position of **4**, **6**, **11** and **12** is offered below.

The compound $[W{C_6F_4C(O)Me-2}(\eta-C_5H_5)(CO)_2]$ 3 was

Scheme 3 (*i*) $L = Bu^{t}NC$, in pentane at r.t. for 18 h, yield 45%; $L = PPh_{3}$, in toluene, reflux for 18 h, 42%; (*ii*) PMe₃ in heptane at r.t. for 15 h, 45%; (*iii*) dppe (0.5 equivalent) in toluene under photolysis for 15 h at 60 °C, 34%; (*iv*) excess of PMe₃ in toluene at reflux under photolysis for 3 d, 26%; (*v*) excess of PMe₃ in heptane under reflux for 15 h, 74%

Fig. 4 Molecular structures of (*a*) $[Fe{C_6F_4C(O)Me-2}(\eta-C_5H_5)-(PPh_3)]$ **11** and (*b*) $[{Fe}[C_6F_4C(O)Me-2](\eta-C_5H_5)}_2(\mu$ -dppe)] **12**. The H atoms are omitted for clarity

treated with dppe and then the product was subsequently photolysed in the presence of PMe_3 . After chromatography a few crystals of a blue-violet compound were obtained and the crystal structure was determined. The molecular structure of **13** is shown in Fig. 5 and selected interatomic distances and angles are given in Table 1. The structure shows that the dppe ligand has replaced one of the terminal carbonyl ligands and is

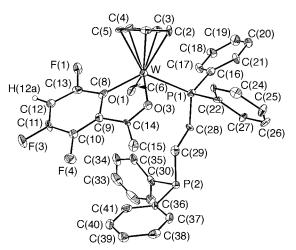


Fig. 5 Molecular structure of $[W\{C_6F_3H\mathchar`-5\mathchar`-C(O)Me\mathchar`-2\}(\eta\mathchar`-C_5H_5)\mathchar`-(CO)\{P(Ph)_2CH_2CH_2PPh_2\}]$ 13

bonded to the metal centre in a monodentate fashion *via* one phosphorus atom. The usual bidentate co-ordination of dppe may be prevented by steric constraints. In addition to dppe coordination, the aromatic fluorine atom *meta* to the metal centre has been substituted by hydrogen. This substitution is presumed to arise from the presence of PMe₃. The bond lengths and angles in compound **13** compare favourably with those obtained for [Fe{C₆F₄C(O)Me-2}(η -C₅H₅)(PPh₃)] **11**. For example, the acyl C=O bond length is found to be 1.254(12) Å as compared with 1.256(5) Å in **11**. The acyl O–metal bond in **13** is 2.078(9) Å compared to 1.980(3) Å in **11**. Since only a few crystals of **13** were available further characterisation was not made.

Spectroscopic studies

The labelling of the C_6F_4 atoms used in the assignments of the NMR spectra are shown in Table 2. For the most part the assignments are straightforward. However it is interesting that the ¹H NMR spectra showed that the resonances due to the methyl hydrogens of the acyl group occur either as doublets (1, 4, 2, 3, 7) or multiplets (5, 6, 10, 11) between δ 1.85 and 2.56. The four fluorine atoms F_{c-f} of compound 11 were irradiated in turn whilst the ¹H NMR spectrum of the acyl group was monitored. It was found that irradiation of the fluorine at δ –136.4 led to the collapse of the methyl multiplet. This selective ¹H-{¹⁹F} irradiation experiment suggests that the splitting of

the methyl signals is the result of through-space coupling. The ¹H-{¹⁹F} difference nuclear Overhauser effect (NOE) spectrum of **3** also indicates that the coupling arises from a through-space interaction with a ¹⁹F nucleus. A ¹⁹F-¹⁹F COSY experiment on **3** gave the order of δ (¹⁹F) -140.0, -165.3, -157.1 and -116.0 for the C₆F₄ fluorines and ¹H-{¹⁹F} selective-irritation experiments identified the ¹⁹F signal at δ -140.0 as due to F_f ($J_{FH} = 3.8$ Hz). A ¹⁹F-¹³C multiple-bond correlation (¹⁹F-¹³C HMBC) experiment further indicates the F_f atom is the one adjacent to the carbon atom bearing the acetyl group (C_a), and the ¹⁹F signal at δ -116.0 is due to the F_c atom. Also, a ¹⁹F-¹³C single-bond correlation (¹⁹F-¹³C HSQC) experiment for **3** also indicates the same assignment of the four C₆F₄ fluorines, as shown in Table 2. Independent support for this assignment comes from a similar NMR study of **7**, which also indicated a close spatial proximity of the F_f fluorine atom as giving rise to the splitting of the ¹H NMR signal of the acyl methyl group.

The assignments of the carbon resonances of the C_6F_4 fragment of compound **1** were achieved by ${}^{19}F^{-13}C$ singlebond correlation experiments. The signals of atoms $C_c^{-}C_f$ were assigned with the help of the cross-peaks of the related fluorine resonances. The remaining signals of atoms C_a and C_b of the C_6F_4 fragment could be assigned on the basis of their chemical shifts. Thus C_a bound to the acyl group is expected to be less shielded than C_b which is bound to the metal atom.

Comparison of the chemical shifts of the C_dF carbon of compounds **1–3** and **6** with those of the C_dH carbons of **7–9** show that, as expected, the latter are shifted upfield, by 33, 36 and 37 ppm, respectively.

The resonances of the carbon atoms of the acyl groups in compounds 1–12 were observed between δ 206 and 211. For 5, where the acyl group is not co-ordinated to the iron centre, the acyl carbon signal was observed in the same range indicating that the co-ordination of the oxygen atom to the metal has little influence on the shielding of the acyl carbons.

The IR spectra of compounds **1–12** reveal strong bands between 1581 and 1547 cm⁻¹ characteristic of v(CO) of acyl groups. The absorption of the non-co-ordinating acyl group in **5** occurs at 1547 cm⁻¹ compared to 1581 cm⁻¹ for [Fe{C₆-F₄C(O)Me-2}(η -C₅H₅)(CO)] **1**.

Structural aspects

In compounds **2–4**, **6**, **7** and **11–13** the atoms of the fivemembered MC₃O ring are essentially coplanar and deviations from planarity do not exceed 0.5 Å; the MC₃O rings lie essentially coplanar with the condensed benzene ring. For example, the angle between the FeC₃O ring and the C₆ rings for **6** and **12** are 2.4 and 1.3°, respectively. The bond lengths of the C=O groups in **4**, **6**, **11** and **12** are 1.247(3), 1.262(5), 1.256(5) and 1.264(7) Å respectively, and these are longer than in the compound **5** [1.207(5) Å]. The latter distance is typical for related non-co-ordinating C=O groups, values for which occur in the range 1.19–1.22 Å.¹¹

The carbon–carbon bond distance between the C_6 ring and the carbon of the acyl C=O group $[C_a-C (acyl)]$ in compounds 4, 6, 11 and 12 are unusually short with the values 1.446(4), 1.433(6), 1.440(7) and 1.42(1) Å, respectively. The C_a-C (acyl) bond length in **5** is longer at 1.514(6) Å which is characteristic of a single bond¹¹ between an aromatic ring and a sp²hybridised carbon atom. These shorter bond distances can be understood in terms of a contribution of the resonance form **B** shown in Scheme 4. This would develop a positive charge on the C_d carbon which may account for its susceptibility to nucleophilic substitution of the F_d fluorine as observed in the formation of 7, 8 and 10. We note that the substitution of fluorine atoms by hydrogen on aryl rings using organic and organometallic nucleophiles is known¹² but, to our knowledge, there is no previous report of the use of tertiary phosphines for this transformation.1

Scheme 4 Resonance structures suggested from the interatomic distances, showing the development of a positive charge on C_d in **B**

In conclusion, we have identified surprising reactions, namely the formation of the metallacycle MC₃O group in a high-yield reaction which incorporates a benzenoid C_6F_4 moiety derived from $B(C_6F_5)_3$, and a high-yield and selective substitution of a fluorine of the aromatic C_6F_4 group by a hydrogen atom.

Experimental

All manipulations of air- and moisture-sensitive materials were carried out under dinitrogen using either standard Schlenk techniques, or in an inert-atmosphere dry-box containing dinitrogen. The dinitrogen was purified by passing over 4 Å molecular sieves, and either BASF catalyst or MnO. Solvents were predried by standing over 4 Å molecular sieves and then refluxed and distilled under an atmosphere of dinitrogen from sodium-potassium alloy [pentane, light petroleum (b.p. 40-60 °C), toluene, benzene], and stored over freshly activated molecular sieves (4 Å). Deuteriated solvents for NMR studies were refluxed and condensed from potassium (C6D6, [2H8]toluene) or CaH₂ (CD₂Cl₂), then stored in Young ampoules. The NMR data were recorded using a Bruker AM 200 or 300 (¹H, ¹³C) and Varian Unity Plus 500 spectrometer (¹H, ¹¹B, ¹³C, ¹⁹F, ³¹P, variable-temperature and two-dimensional experiments). Most two-dimensional experiments were performed using z gradients with a version of the pulse sequences. An unambiguous assignment of all ¹⁹F and ¹³C NMR signals was carried out for compounds 3 and 8 (see text). The signals of 2, 7 and 5 were assigned by analogy. Standards: SiMe₄ (¹H, ¹³C); internal solvents as secondary standards, $\delta(^{1}H)(CHCl_{3})$ 7.24, $(C_6D_5H) \ 7.15, \ \delta(^{13}C)(CDCl_3) \ 77.0, \ (C_6D_6) \ 128.0; \ CFCl_3 \ (^{19}F,$ fluorobenzene as a secondary standard, δ –116.0); external BF₃·OEt₂ (¹¹B). Chemical shifts (δ) in ppm; a positive sign indicates a downfield shift relative to the standard. Coupling constants are given as absolute values. The IR spectra were recorded as Nujol mulls on NaCl plates or KBr discs, using a Perkin-Elmer 1510 Fourier-transform interferometer. Mass spectra were measured using electron-impact (EI, 70 eV, the calibration of the instrument is unreliable and varies $\pm 1\%$) and fast atom bombardment techniques. Elemental analyses were performed by the analytical department of this laboratory.

The compounds $[Fe(\eta-C_5H_5)(CO)_2Me]$ and $[M(\eta-C_5H_5)-(CO)_3Me]$ $(M=Mo\ or\ W)$ were prepared as previously described. ^14

Preparations

B(C_6F_5)₃. A modification of a previously published method ¹ was used. **CAUTION**: extreme precautions were exercised due to the explosive nature of the intermediate lithium salt Li(C_6F_5) which detonates above *ca.* -20 °C. It is essential to maintain the reaction mixture at -78 °C until the reaction with BBr₃ has been completed. The use of safety screens is advised. The apparatus used is shown in Fig. 6.

A solution of bromopentafluorobenzene (53.5 g, 0.217 mol) in light petroleum (b.p. 40–60 °C) (1 l) was treated with a solution of *n*-butyllithium in hexane (86.8 cm³, 2.5 mol dm⁻³, 0.217 mol) at -78 °C. The resulting white suspension was stirred for 1 h and then added to a solution of boron tribromide (72.0 cm³, 1 mol dm⁻³, 0.072 mol) in light petroleum (0.3 l) at -78 °C. After additional stirring for 15 h at room temperature the mix-

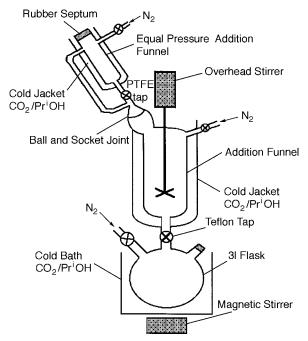


Fig. 6 Apparatus used for the preparation of solvent-free $B(C_6F_5)_3$

ture was filtered through a bed of Celite to give a clear colourless solution. A white microcrystalline solid was obtained after the volume of the filtrate was concentrated to 30 cm³. The supernatant was decanted off and the resulting white solid dried *in vacuo*. Further purification by vacuum sublimation (140 °C, 10^{-1} Torr) gave white crystals. Yield: 18 g (48%).

[Fe{C₆F₄C(O)Me-2}(η-C₅H₅)(CO)] 1. A red solution of $[Fe(η-C_5H_5)(CO)_2Me]$ (4.34 g, 22.6 mmol) in toluene (30 cm³) was treated with $B(C_6F_5)_3$ (11.57 g, 22.6 mmol) in toluene (120 cm³) and was stirred for 15 h at room temperature. Completion of the reaction was revealed by IR spectroscopy [replacement of the v(CO) absorptions of the starting material at 2009 and 1952 cm⁻¹ by that of the product at 1957 cm⁻¹]. The resulting orange-green mixture was evaporated to dryness, and purified by alumina column chromatography at -25 °C. Elution with Et₂O-pentane (1:10) gave a green-brown fraction, from which compound **1** was isolated as a microcrystalline solid after removal of the volatiles *in vacuo*. Extraction into pentane and crystallisation at -80 °C yielded green-brown crystals. Yield: 6.03 g (79%).

The volatiles of the reaction mixture were isolated in a cold trap (77 K) and were treated with an excess of 4-methylpyridine to form Lewis acid–base adducts with the boron-containing byproducts. The clear solution was warmed to room temperature and the volatiles were evaporated under reduced pressure to give a white residue. The components of the residue were identified as BF₃·NC₆H₇ and BF₂(C₆F₃)·NC₆H₇ by ¹H and ¹¹B NMR spectroscopy. BF₃·NC₆H₇: ¹H NMR (C₆D₆) δ 1.46 (s, 3 H, NC₅H₄CH₃), 6.18 (d, 2 H, ³*J* = 6.0, NC₅H₄a CH₃) and 8.14 (d, 2 H, ³*J* = 6.0, NC₅H₄CH₃). BF₂(C₆F₅)·NC₆H₇: ¹H NMR (C₆D₆) δ 1.0 (q, 1 B, *J* = 11.0 Hz, BF₃). BF₂(C₆F₅)·NC₆H₇: ¹H NMR (C₆D₆) δ 1.50 (s, 3 H, NC₅H₄CH₃), 6.28 (d, 2 H, ³*J* = 6.3, NC₅H₄a CH₃) and 8.22 (d, 2 H, ³*J* = 6.3, NC₅H₄₆CH₃); ¹¹B NMR (C₆D₆) δ 3.9 (t, 1 B, *J* = 47.9 Hz, BF₂C₆F₅).

[Mo{C₆F₄C(O)Me-2}(\eta-C₅H₅)(CO)₂] 2. A solution of B(C₆F₅)₃ (1.57 g, 3.08 mmol) in toluene (25 cm³) was added to a stirred solution of [Mo(η -C₅H₅)(CO)₃Me] (0.8 g, 3.08 mmol) in toluene (30 cm³). The solution rapidly changed from golden yellow to dark red. It was left to stir for 42 h. The reaction mixture was blood-red and the IR spectrum indicated that all the starting material had reacted. The solvent was removed under reduced pressure to give a dark red solid which was then

placed on alumina (*ca.* 3 g). The coated alumina was added to a low-temperature (-25 °C) chromatography column which had been filled with light petroleum and alumina (25 cm). The product was washed with light petroleum (3×100 cm³) and slow elution with light petroleum–Et₂O (10:1) facilitated collection of a red band. The solvent was removed from the eluate under reduced pressure and the solid obtained recrystallised from warm heptane to give red crystals of compound **2**. Yield: 25%.

 $[W{C_6F_4C(O)Me-2}(\eta-C_5H_5)(CO)_2]$ 3. A solution of B(C₆- F_5 ₃ (1.47 g, 2.87 mmol) in toluene (25 cm³) was added to a stirred solution of [W(η-C₅H₅)(CO)₃Me] (1 g, 2.87 mmol) in toluene (30 cm³). The solution immediately turned from yelloworange to dark red. It was left to stir and the reaction progress was monitored by solution IR spectroscopy. After stirring for 48 h the solution was dark purple and the IR spectrum indicated that the starting material had reacted. The solvent was removed under reduced pressure to give a dark purple solid which was then placed on alumina. The coated alumina was added to a low-temperature (-25 °C) chromatography column which had previously been filled with pentane and 25 cm of alumina. The product was washed with pentane $(3 \times 100 \text{ cm}^3)$ and elution with pentane-Et₂O (1:1) developed a deep purple band which was collected. The solvent was removed under reduced pressure and the residue recrystallised from hot heptane to give purple crystals (m.p. 175-176 °C; sublimation point 95 °C, 0.1 Torr) of compound 3. Yield: 75%.

[Fe{C₆F₄C(O)Me-2}(η-C₅H₅)(Bu'NC)] 4. An orange-brown solution of [Fe{C₆F₄C(O)Me-2}(η-C₅H₅)(CO)] **1** (230 mg, 0.68 mmol) in pentane (100 cm³) was treated with *tert*-butyl isocyanide (56.5 mg, 0.68 mmol) and stirred for 18 h at room temperature. Completion of the reaction was monitored by IR spectroscopy [replacement of the v(CO) absorption of the starting material at 1957 cm⁻¹ by the v(C≡NBu^t) absorption at 2038 cm⁻¹]. The resulting purple mixture was evaporated to dryness and purified by column chromatography on alumina at −25 °C. Compound **4** was eluted with Et₂O-pentane (1:4) and the volatiles of the purple eluate were removed *in vacuo*. Extraction into pentane and crystallisation at −80 °C yielded dark purple crystals. Yield: 120 mg (45%).

[Fe{C₆F₄C(O)Me-2}(η -C₅H₅)(CO)(PMe₃)] 5. An orangebrown solution of compound 1 (410 mg, 1.21 mmol) in heptane (50 cm³) was treated with trimethylphosphine (96 mg, 1.21 mmol) and stirred for 15 h at room temperature. The resulting purple solution was evaporated to dryness and vacuum sublimation (70 °C, 10⁻¹ Torr) gave a microcrystalline solid. Extraction into heptane and crystallisation at -80 °C yielded purple crystals. Yield: 120 mg (45%). Compound 5 melts without decomposition at 100 °C in a sealed capillary and sublimes at 85 °C under vacuum (10⁻¹ Torr). It is soluble in common organic solvents.

[Fe{C₆F₄C(O)Me-2}(η -C₅H₅)(PMe₃)] 6. *Method A*. A purple solution of compound 5 (110 mg, 0.26 mmol) in heptane (30 cm³) was refluxed for 15 h. The elimination of CO from the compound was revealed by IR spectroscopy, as in the synthesis of compound 4. The solvent was evaporated under reduced pressure, and extraction of the residue into heptane and crystallisation at -80 °C yielded purple crystals of 6. Yield: 75 mg (74%).

Method B. A solution of compound **1** (550 mg, 1.62 mmol) and trimethylphosphine (1 cm³; 735 mg, 9.6 mmol) in heptane (50 cm³) was refluxed for 15 h until the reaction was complete (IR monitoring). The volatile materials were removed under reduced pressure and the purple residue was purified by column chromatography on alumina at -25 °C. Elution with Et₂O-pentane (1:20) gave a purple fraction, from which the com-

pound **6** was isolated as a microcrystalline solid after removal of the solvent *in vacuo*. Yield: 200 mg (32%).

[Mo{C₆F₃H-5-C(O)Me-2}(η -C₅H₅)(CO)₂] 7. A blood-red solution of [Mo{C₆F₄C(O)Me-2}(η -C₅H₅)(CO)₂] (0.06 g, 1.47 mmol) in toluene (40 cm³) was treated with PMe₃ (1.22 cm³, 11.79 mmol) and the mixture was left to stir at r.t. for 5 h. It became purple and the solution IR spectrum showed little change in the CO region. The mixture was refluxed for 3 h and then left to stir at r.t. for 16 h. The solvent was removed under reduced pressure and the dark purple residue chromatographed on alumina at -25 °C. Elution with light petroleum gave a purple band. Further elution with light petroleum-Et₂O (10:1) developed this band further and also initiated a slow-moving blue band towards the top of the column. The purple band was collected, the solvent was removed under reduced pressure and the toy at reduced pressure and the residue recrystallised from hot heptane to yield dark red crystals of compound 7. Yield: 65%.

 $[W{C_6F_3H-5-C(O)Me-2}(\eta-C_5H_5)(CO)_2]$ 8 and $[W{C_6F_3H-}$ 5-C(O)Me-2}(η-C₅H₅)(CO)(PMe₃)] 9. A claret-purple solution of $[W{C_6F_4C(O)Me-2}(\eta-C_5H_5)(CO)_2]$ 3 (0.4 g, 0.81 mmol) in toluene (60 cm³) was treated with PMe₃ (1.03 cm³, 9.95 mmol). The mixture was photolysed under reflux using an ultraviolet lamp (500 W) for 7.5 h. The solution was then allowed to stir for 16.5 h, giving a violet-purple solution with a black deposit. The solvent was removed under reduced pressure and the dark violet-black residue chromatographed at -25 °C. Elution with light petroleum $(3 \times 100 \text{ cm}^3)$ and then with light petroleum-Et₂O (2:1) developed a claret-purple band. Increasing the solvent ratio to 1:1 also developed a second blue band. The two bands were neatly separated by very slow elution and collected separately. The solvent in each case was removed under reduced pressure to yield green and blue-violet solids. The green solid was recrystallised from hot heptane to give green crystals of compound 8. The blue-violet solid was also recrystallised from hot heptane to give a blue-violet microcrystalline powder of 9.

[Fe{C₆F₃H-5-C(O)Me-2}(η-C₅H₅)(PMe₃)] 10. An orangebrown solution of [Fe{C₆F₄C(O)Me-2}(η-C₅H₅)(CO)] **1** (490 mg, 1.44 mmol) and an excess of trimethylphosphine (≈3 cm³) in toluene (50 cm³) were refluxed and photolysed using a ultraviolet lamp (500 W) for 3 d. The volatile materials of the bluepurple reaction mixture were removed under reduced pressure and the residue was purified by column chromatography on alumina at −25 °C. Elution with Et₂O–pentane (1:1) gave a purple fraction and after removal of the solvent *in vacuo* the compound [Fe{C₆F₃H-5-C(O)Me-2}(η-C₅H₅)(PMe₃)] **10** was isolated as a microcrystalline solid. The residue was extracted into boiling heptane and cooling of the solution to −80 °C gave black-purple crystals. Yield: 140 mg (26%). Compound **10** can also be prepared in the same manner starting from **6**, in 74% yield.

[Fe{C₆F₄C(O)Me-2}(η -C₅H₅)(PPh₃)] 11. Compound 1 (700 mg, 2.06 mmol) and triphenylphosphine (540 mg, 2.06 mmol) were refluxed in toluene (50 cm³) for 18 h until the reaction was complete. It was monitored by IR spectroscopy [disappearance of the v(CO) absorption of the starting material at 1957 cm⁻¹]. The volatiles of the resulting purple solution were removed under reduced pressure and the residue was purified by column chromatography on alumina at -25 °C. Elution with Et₂O-pentane (1:2) gave a purple fraction which was evaporated to dryness *in vacuo* and crystallisation from a solution of pentane at -80 °C gave dark purple crystals. Yield: 500 mg (42%).

[{Fe[C₆F₄C(O)Me-2](η -C₅H₅)}₂(μ -dppe)] 12. An orangebrown solution of compound 1 (295 mg, 0.87 mmol) and 1,2bis(diphenylphosphino)ethane (173 mg, 0.43 mmol) in toluene (50 cm³) was photolysed using an ultraviolet lamp (500 W) for 15 h at 60 °C until the reaction was complete (IR monitoring). An important feature is that exactly half an equivalent of dppe must be used to avoid bidentate co-ordination of the phosphine ligand. The solvent was removed under reduced pressure and the residue was extracted into pentane–Et₂O (1:1) and filtered through a bed of alumina. The volatiles of the filtrate were evaporated under reduced pressure and the residue was extracted into boiling heptane. Crystallisation at -80 °C yielded purple crystals of compound **12**. Yield 150 mg (34%).

[W{C₆F₃H-5-C(O)Me-2}(η-C₅H₅)(CO){P(Ph)₂CH₂CH₂-

PPh₂] **13.** The compound $[W{C_6F_4C(O)Me-2}(\eta-C_5H_5)(CO)_2]$ (1.14 g, 2.30 mmol) was dissolved in toluene (50 cm³) and Ph₂PCH₂CH₂PPh₂ (dppe) (0.916 g, 2.30 mmol) was added. The mixture was refluxed for 5.5 h after which time the solution IR spectrum showed no change in the carbonyl region. The mixture was left to stir at room temperature for 7 d. No reaction was obvious so the solvent was removed under reduced pressure and the solid obtained was placed on alumina (*ca.* 5 g). The coated alumina was added to a low-temperature (-25 °C) chromatography column filled with light petroleum and 20 cm of alumina. The column was washed with light petroleum (3 × 100 cm³) and elution with light petroleum–Et₂O (1:1) gave a purple band. The solvent was removed under reduced pressure and recrystallisation from boiling heptane gave claret-purple crystals.

Trimethylphosphine (1.03 cm³, 9.95 mmol) was added to a stirred solution of the above crystals in toluene (40 cm³) and the mixture photolysed for 7 h using a medium-pressure ultraviolet lamp (500 W). After this time the solution had turned to dark blue-violet and the carbonyl region of the IR spectrum showed the formation of a new product. The solvent was removed under reduced pressure and the solid obtained was suspended on alumina. The coated alumina was added to a lowtemperature (-25 °C) chromatography column which had been filled with light petroleum and 20 cm of alumina. The product was washed with light petroleum $(2 \times 100 \text{ cm}^3)$ and eluted with light petroleum-Et₂O (10:1). This developed a blue-violet band which was collected by gradually increasing the solvent ratio to 1:1. The solvent was removed under reduced pressure and recrystallisation from boiling heptane gave blue-violet crystals of the compound $[W{C_6F_3H-5-C(O)Me-2}(\eta-C_5H_5)(CO)-$ {P(Ph)₂CH₂CH₂PPh₂}] 13. Only a few crystals were obtained (yield ca. 4%) and their characterisation was by X-ray crystallography only.

Crystallography

X-Ray-quality crystals were obtained by slow cooling of hot saturated solutions of the compounds in pentane (4, 6, 11) and heptane (2, 3, 5, 7, 12, 13) to -80 °C. They were sealed in a Lindemann capillary (0.5-0.7 mm) under dinitrogen. For 2, 5-7 and 12 the data collection was carried out on an Enraf-Nonius CAD4 diffractometer. The unit-cell parameters were calculated from the setting angles of 25 strong high-angle carefully centred reflections. Three reflections were chosen as intensity standards and measured every 3600 s of X-ray exposure time and three orientation controls were measured every 147-200 reflections. The data were measured using graphite-monochromated Mo-K α radiation ($\lambda = 0.710$ 69 Å) with an ω -2 θ scan mode. The ratio of the scanning rates was $\omega: \theta = 1:2$. Data were corrected for Lorentz-polarisation effects. For 3, 4 and 13 the data collection was carried out on a Delft Instruments FAST TV areadetector diffractometer, equipped with a rotating-anode FR 591 generator (50 kV, 10 mA); further details are described in ref. 15.

For compound **6** a correction for crystal decay (*ca.* 13%) was applied during processing the data set. For **6** and **12** data were also corrected using an empirical absorption correction.¹⁶ In **12**

Table 4Crystallographic details for compounds 2, 3, 7 and 13

	2	3	7	13
Formula	C ₁₅ H ₈ F ₄ MoO ₃	$C_{15}H_8F_4O_3W$	C ₁₅ H ₉ F ₃ MoO ₃	C40H33F3O2P2W
Colour	Red	Red	Purple	Blue-violet
Formula weight	408.16	496.06	390.16	848.49
Crystal size/mm	0.33 imes 0.36 imes 0.24	0.28 imes 0.14 imes 0.14	0.5 imes 0.25 imes 0.15	0.14 imes 0.14 imes 0.07
Crystal system	Triclinic	Triclinic	Triclinic	Monoclinic
Space group	PĪ	PĪ	PĪ	$P2_{1}/c$
a/Å	8.3420(4)	8.206(8)	8.285(2)	11.577(2)
b/Å	8.9687(7)	8.905(4)	8.933(1)	19.525(4)
c/Å	11.1874(9)	11.104(9)	11.176(2)	15.389(3)
$\alpha / ^{\circ}$	69.126(6)	68.44(8)	68.79(1)	90.00
β/°	75.691(5)	75.48(8)	74.55(2)	97.20(3)
γ/°	63.515(5)	63.83(4)	63.78(2)	90.00
$U/Å^3$	698.47	673.5(9)	683.3(2)	3451.1(1)
Ζ	2	2	2	4
$D_{\rm c}/{ m g~cm^{-3}}$	1.94	2.446	1.896	1.633
F(000)	400	464	384	1680
μ/cm^{-1}	9.47	8.636	10.04	3.491
<i>T</i> /K	293(2)	120	293(2)	150
Lattice segment	$\pm h$, $\pm k$, $\pm l$	$\pm h, \pm k, \pm l$	$\pm h, \pm k, \pm l$	$\pm h, \pm k, \pm l$
$\theta_{max}^{\prime \circ}$ for data	25.0	29.9	29	25.0
No. reflections:				
total	2836	1913 (after red.)	2144 (after red.)	8529
unique	2437	1913	2144	$5015 \ (R_{\rm int} = 0.0784)$
in refinement	2072 [<i>I</i> > 3σ(<i>I</i>)]	$1810 [F > 4\sigma(F)]$	1882 $[F > 4\sigma(F)]$	2404 [$F > 4\sigma(F)$]
R _{merge}	0.013	0.0	0.0	0.078
Parameters	240	198	200	434
Data: parameter ratio	$9:1 [F > 3\sigma(F)]$	9.7:1; 9.1:1 [$F > 4\sigma(F)$]	$10.7:1; 9.4:1 [F > 4\sigma(F)]$	$11.6:19; 5.5:1 [F > 4\sigma(F)]$
Minimum, maximum transmission	0.88, 1.14	0.616, 1,0	0.575, 1.0	0.72, 1.0
R^{a}/R'^{b}	0.0272/0.0325	—	—	—
$R1 [F > 4\sigma(F)]$	—	0.0467	0.0315	0.0494
wR2 (all data)	—	0.1325	0.0706	0.1028
Goodness of fit	_	1.098	1.072	0.645
Maximum, minimum peaks in difference maps/e Å ⁻³	0.70, -0.40	1.794, -1.355	0.832, -0.669	1.020, -0.835
$^{a}R = \Sigma(F_{o} - F_{c})/\Sigma F_{o}. \ ^{b}R' = [w\Sigma(F_{o} - F_{c})^{2}/\Sigma w F_{o} ^{2}]^{\frac{1}{2}}.$				

Table 5Crystal data and experimental details for compounds 4–6, 11 and 12

	4	5	6	11	12
Formula	C ₁₈ H ₁₇ F ₄ FeNO	C ₁₇ H ₁₇ F ₄ FeO ₂ P	C ₁₆ H ₁₇ F ₄ FeOP	C31H23F4FeOP	C ₅₂ H ₄₀ F ₈ Fe ₂ O ₂ P ₂
M	395.18	416.14	388.12	574.34	1022.52
Crystal size/mm	0.19 imes 0.22 imes 0.40	0.07 imes 0.22 imes 0.18	0.31 imes 0.40 imes 0.74	0.13 imes 0.18 imes 0.25	0.34 imes 0.42 imes 0.43
Crystal system	Triclinic	Monoclinic	Monoclinic	Triclinic	Monoclinic
Space group	ΡĪ	$P2_1/c$	$P2_1/c$	PĪ	$P2_1/n$
aĺÅ	8.4663(7)	8.586(2)	8.577(2)	9.391(3)	10.667(4)
b/Å	10.5039(7)	13.215(2)	9.222(3)	10.195(6)	22.408(3)
c/Å	10.9915(8)	15.712(3)	20.916(7)	13.26(1)	19.185(5)
$\alpha /^{\circ}$	98.927(6)			95.23(4)	
β/°	106.067(6)	104.70(1)	92.53(2)	103.13(4)	93.92(2)
$\gamma/^{\circ}$	104.746(6)			93.49(3)	
U/Å ³	881.2	1724.39	1652.9(8)	1226.9	4575(2)
Ζ	2	4	4	2	4
$D_{\rm c}/{ m g~cm^{-3}}$	1.49	1.60	1.56	1.56	1.48
F(000)	404	848	792	588	2088
μ/cm^{-1}	8.97	10.10	10.45	7.29	7.74
<i>T</i> /K	293	120	293	120	293
Total data collected	4372	6712	3826	4014	7970
Total unique data	3838	2597	3585	2629	7525
Total observed data	$2322 [I > 3\sigma(I)]$	$1795 [I > 2\sigma(I)]$	$2053 [I > 3\sigma(I)]$	$2018 [I > 2\sigma(I)]$	$4499 [I > 3\sigma(I)]$
<i>R</i> Merge	0.020	0.061	0.061	0.068	0.030
No. parameters	226	226	208	253	595
Observations/ parameters	10.3	7.9	9.9	8.0	7.6
Chebychev weighting scheme parameters	6.64, -3.52, 5.57	15.1, -9.4, 11.6	21.90, -5.94, 18.70	6.06, 0.60, 3.51	10.90, -17.70, 8.19, -7.70
Minimum, maximum residual peak/e Å ⁻³	-0.23, 0.22	-0.36, 0.83	-0.39, 0.39	-0.41, 0.67	-0.67, 0.54
R	0.033	0.043	0.043	0.047	0.055
R' ^b	0.031	0.048	0.051	0.049	0.051
R					

all hydrogens were located in the difference maps whilst for **6** only H atoms of the Me were located (positions of the H atoms of the C_5 ring were calculated). All hydrogens of **6** and **12** were

included in the final refinement with fixed positional and thermal parameters. Neutral atom scattering factors were taken from the usual sources. 17

For compounds 2, 3, 7 and 13 the non-hydrogen atoms were located by Patterson (2, 13) and direct methods (3, 7) and Fourier-difference syntheses. A DIFABS¹⁸ absorption correction was carried out on all three data sets. The hydrogen atoms were placed in calculated positions in the final cycles of refinement. The structures were refined using full-matrix least squares with anisotropic thermal parameters for all nonhydrogen atoms. All crystallographic calculations were carried out using the CRYSTALS¹⁹ program package on a MicroVax 3800 computer (2, refinement against F) or with the SHELXL 93^{20} software on a personal computer (3 and 7, refinement against F^{2}). The crystallographic data are given in Tables 4 and 5. For 2, a Chebychev weighting scheme was applied (parameters: 8.89, -5.46, 6.92);²¹ for **3** (n = 0.0779) and **7** (n = 0.0403) the weighting scheme was $W^{-1} = \sigma^2 F_o^2 + (nP)^2 + 0.0P$, where $P = (F_o^2 + 2F_c^2)/3$. Only the relevant *R* values are given in Table 4. Atomic scattering factors were taken from the usual sources.17

Atomic coordinates, thermal parameters, and bond lengths and angles have been deposited at the Cambridge Crystallographic Data Centre (CCDC). See Instructions for Authors, *J. Chem. Soc., Dalton Trans.*, 1997, Issue 1. Any request to the CCDC for this material should quote the full literature citation and the reference number 186/518.

Acknowledgements

We thank Dr. J. Cook for helpful discussions and BASF AG/ Studienstiftung des Deutschen Volkes for a post-doctoral fellowship (to N. M.). This work was financially supported by the EPSRC. Access to a Brüker AM 200 NMR instrument (courtesy of Dr. P. Grebenik, Oxford Brookes University) is gratefully acknowledged. We thank the EPSRC Mass Spectroscopy Service (Dr. J. A. Ballantine) for essential assistance.

References

 A. G. Massey, A. J. Park and F. G. A. Stone, *Proc. Chem. Soc.*, 1963, 212; A. G. Massey and A. J. Park, *J. Organomet. Chem.*, 1964, 2, 245.

- 2 H. H. Brintzinger, D. Fischer, R. Mülhaupt, B. Rieger and R. Waymouth, *Angew. Chem.*, 1995, **107**, 1225; *Angew. Chem., Int. Ed. Engl.*, 1995, **34**, 1143.
- 3 M. L. H. Green, J. Haggitt and C. P. Mehnert, J. Chem. Soc., Chem. Commun., 1995, 1853.
- 4 J. R. Galsworthy, M. L. H. Green, M. Müller and K. Prout, *J. Chem. Soc., Dalton Trans.*, 1997, 1309.
- 5 H. Nöth and B. Wrackmeyer, *Nuclear Magnetic Resonance Spectroscopy of Boron Compounds*, Springer, Heidelberg, 1978.
- 6 F. Correa, R. Nakamura, R. E. Stimson, J. R. L. Burwell and D. F. Shriver, J. Am. Chem. Soc., 1980, 102, 5112; S. B. Butts, E. M. Holt, S. H. Strauss, N. W. Alcock, R. E. Stimson and D. F. Shriver, J. Am. Chem. Soc., 1980, 102, 5093; B. Butts, E. M. Holt, S. H. Strauss, N. W. Alcock, R. E. Stimson and D. F. Shriver, J. Am. Chem. Soc., 1979, 101, 5864.
- 7 L. Jia, X. Yang, A. Ishihara and T. J. Marks, *Organometallics*, 1995, 14, 3135.
- 8 A. R. Seidle, R. A. Newmark, W. M. Lamanna and J. C. Huffman, Organometallics, 1993, 12, 1491.
- 9 B. Temme, G. Erker, J. Karl, H. Luftmann, R. Fröhlich and S. Kotila, *Angew. Chem.*, 1995, **107**, 1867.
- 10 X. Yang, C. L. Stern and T. J. Marks, Angew. Chem., Int. Ed. Engl., 1992, 31, 1375.
- 11 F. A. Allen, O. Kennard, D. Watson, L. Brammer, G. Orpen and R. Taylor, *J. Chem. Soc., Dalton Trans.*, 1987, S1.
- 12 L. Kiplinger, T. G. Richmond and C. E. Osterberg, *Chem. Rev.*, 1994, **94**, 373.
- 13 C. Mehnert, D.Phil Thesis, Oxford, 1996.
- 14 T. S. Piper and G. Wilkinson, J. Inorg. Nucl. Chem., 1956, 3, 104; R. Birtwhistell, P. Hackett and A. R. Manning, J. Organomet. Chem., 1978, 157, 239.
- 15 S. R. Drake, M. B. Hursthouse, K. M. Abdul Malik and S. A. S. Miller, *Inorg. Chem.*, 1993, 32, 4653.
- 16 A. T. C. North, D. Č. Phillips and F. S. Matthews, Acta Crystallogr., Sect. A, 1968, 24, 151.
- 17 International Tables for X-Ray Crystallography, Kynoch Press, Birmingham, 1974.
- 18 N. Walker and D. Stuart, Acta Crystallogr., Sect. A, 1983, 39, 158.
- 19 CRYSTALS, D. J. Watkin, J. R. Carruthers and P. W. Betteridge, Oxford University, 1985.
- 20 SHELXL 93, G. M. Sheldrick, University of Göttingen, 1993.
- 21 J. S. Rollet, *Computing Methods in Crystallography*, Pergamon, Oxford, 1965.

Received 10th February 1997; Paper 7/00925I